
Fs 2.0

September 9, 2024

Fs September 9, 2024

Contents

Fs . 2
System folders . 2
List (ls) . 3
Make a new directory . 4
Move file/folder . 5
Copy file/folder . 5
Delete file/folder . 5
Check file/folder presence . 5
Build a path . 6
Example . 6
Encrypt file . 6
Decrypt file . 6
Read . 6
Write . 7
Synchronise two directories . 8
Temp file . 8

Fs

The Fsmodule is used to interact with the filesystem of the local machine.

::: warning Requires Manatee v2 or greater

This version of the Fsmodule cannot be used with Manatee v1 or earlier.

:::

System folders

Provides access to the following system folders:

• tmpfolder: A directory for temporarily storing files
• desktop: The user’s windows desktop
• appdata: The user app data folder. Applications can write user specific data here without re‑
quiring administrator privilege

• startup: The folder which contains shortcuts to applications that should start when the user
logs in

• personal: The root user folder ‑ eg C:\Users\<user name>

2

Fs September 9, 2024

Example

1 var folder = Fs.tmpfolder;

List (ls)

Returns a list of files and directories found in the directory given by the path argument. The pathmay
contain wildcards * in its last segment.

A second option argument can be passed with the following properties:

• deepMatch boolean indicating if the listing should include contents of subdirectories. Defaults
to false. When this property is set to true, files matching the filename given in the path argu‑
ment in any sub‑folder will be returned.

• includeDirectories boolean indicating if the listing should include directories. Defaults to
false. So by default only files are included.

Default behavior is to do a shallow file listing of only the files in the given folder.

::: tip Weird behaviour with 3‑letter extensions

When you use the asterisk wildcard character in a searchPattern such as *.txt, the number of char‑
acters in the specified extension affects the search as follows:

If the specified extension is exactly three characters long, the method returns files with extensions
that begin with the specified extension. For example, *.xls returns both “book.xls” and “book.xlsx”.
In all other cases, themethod returns files that exactlymatch the specified extension. For example,*.
ai returns ” file.ai” but not “file.aif”. When youuse the questionmarkwildcard character, thismethod
returns only files that match the specified file extension. For example, given two files, “file1.txt” and
“file1.txtother”, inadirectory, a searchpatternoffile?.txt returns just the first file,whereasa search
pattern of file*.txt returns both files.

:::

Because this method checks against file names with both the 8.3 file name format and the long file
name format, a search pattern similar to *1*.txtmay return unexpected file names. For example,
using a search pattern of *1*.txt returns “longfilename.txt” because the equivalent 8.3 file name
format is “LONGFI~1.TXT”.

Return value

The resulting array can be used as a string array of the paths to the files. It can also be used as an array
of objects with detailed information about the files. Each such object has the following properties:

3

Fs September 9, 2024

• folder is the folder part of the path. C:\folder\file.txt has the folder path C:\folder.
• path is the full path of the item. Corresponds to the string value of the object.
• extension is the extension of the item. C:\folder\file.txt has the extension .txt.
• name is the name of the item. C:\folder\file.txt has the name file.txt. C:\folder
has the name folder.

• readonly boolean value indicating if the file is read only.
• size is the size of the file in bytes.
• created is the time of creation.
• modified is the time of the last modification.
• accessed is the time of the last file access.

The objects further have the following methods:

• mvmoves the file or directory. Pass the new path as an argument.
• cp copies the file or directory. Pass the new path as an argument.
• rm deletes the file.
• encrypt encrypts the file.
• decrypt decrypts the file.

Example

1 // Get all .txt files prefixed with somefile in somedir
2 var files = Fs.ls("c:\\somedir\\somefile*.txt");
3
4 // Get all .txt files in any sub directory under C:\somedir - at any

depth
5 var files = Fs.ls("c:\\somedir*.txt", { deepMatch: true });
6
7 // Copy readonly files to a backup sub directory
8 var readonlyFiles = files.filter(function (file) {
9 return file.readonly;

10 });
11 _.each(readonlyFiles, function (file) {
12 file.cp(file.folder + "\\backup\\" + file.name);
13 });

Make a new directory

Create a new directory if it does not already exist.

1 Fs.mkdir("C:\\some\\path");

4

Fs September 9, 2024

Move file/folder

Move a file or folder to a different path.

1 Fs.mv("C:\\some\\path\\file.txt", "C:\\some\\other\\path\\file.txt");
2 // or a folder
3 Fs.mv("C:\\some\\path", "C:\\some\\other\\path");

If you want to allow the target file to be overwritten (if it exists):

1 Fs.mv("C:\\some\\path\\file.txt", "C:\\some\\other\\path\\file.txt", {
2 overwrite: true,
3 });

Copy file/folder

Copy a file or folder to a different path

1 Fs.cp("C:\\some\\path\\file.txt", "C:\\some\\other\\path\\file.txt");
2 // and to allow overwrite of target file
3 Fs.cp("C:\\some\\path\\file.txt", "C:\\some\\other\\path\\file.txt", {
4 overwrite: true,
5 });

Delete file/folder

Delete a file or folder

1 Fs.rm("C:\\some\\path\\file.txt");

Check file/folder presence

Determines if a file exists at a given path

Example

1 if (!Fs.exists("C:\\some\\path\\file.txt")) {
2 // Create the file
3 }

5

Fs September 9, 2024

Build a path

Convenience for building a valid file system path to a file or a directory.

Example

1 var p = Fs.buildPath("C:\\root", "foo", "bar.txt");
2 // p represents the path C:\root\foo\bar.txt

Encrypt file

Activates windows file encryption for the file at the given path. Only the currently logged in user will
be able to read the file.

Example

1 Fs.encrypt("C:\\some\\path\\file.txt");

Decrypt file

Deactivates windows file encryption for the file at the given path. Any user will be able to read the file.

Example

1 Fs.decrypt("C:\\some\\path\\file.txt");

Read

Read the contents of a file with the read function.

1 var html = Fs.read("c:\\somedir\\somefile.html");

Getting base64 encoded data

If you need to read a file as base64 encoded data, you can do so by passing the base64 option:

1 var base64EncodedData = Fs.read("c:\\somedir\\somefile.html", { base64:
true });

6

Fs September 9, 2024

Both Fs.read and Fs.writemethods can take an encoding option, like:

1 Fs.write("C:/somewhere/test.txt", "String to write", { encoding: "UTF
-16" });

2 // or for short
3 Fs.write("C:/somewhere/test.txt", "String to write", { encoding: Fs.

UTF16 });
4 // and
5 Fs.read("C:/somewhere/test.txt", { encoding: "UTF-16" });
6 // default if no `encoding` arg is given is UTF-8 no bom

The list of encoding (names) which can be used is found at https://www.iana.org/assignments/
character‑sets/character‑sets.xhtml. Note that not all of these may be available on your machine, to
see those, run:

1 Debug.ger(Fs.encodings);

The following are encodings are defined on Fs;

• Fs.UTF8
• Fs.UTF16
• Fs.ASCII

If you think your file is ANSI or ASCII encoded, but none if these seem to work then you might be
looking for the ISO-8859-1 encoding which sometimes does the trick.

Write

Writes arbitrary text to an arbitrary text file. If the file exists, it will be overwritten. If the file doesn’t
exist, itwill becreatedwith thegivencontents. ThecontentsarewrittenusingUTF‑8encodingwithout
a byte order mark (BOM).

Throws appropriate exceptions if the write fails.

Parameters

• path the file system path to write to
• data a string with the data to write
• options an optional options object. Supported options are;

– base64 a boolean. If true, interprets the data argument as a base64 string and writes the
data to disk as binary data. Defaults to false

7

https://www.iana.org/assignments/character-sets/character-sets.xhtml
https://www.iana.org/assignments/character-sets/character-sets.xhtml

Fs September 9, 2024

– writeBom a boolean. If true, a utf‑8 byte‑order‑mark sequence is prepended to the file.
This helps other applications detect the encoding of the file. Defaults to false. Is ignored if
the base64 option is true.

– encoding The encoding with with to write the file (default is "UTF-8").
– append a boolean. If true, text is appended to the file in the path in question. Is ignored if
the base64 option is true.

Example

1 Fs.write(
2 "c:\\somedir\\somefile.html",
3 "<html><body><h1>Generated html!</h1></body></html>",
4);

Synchronise two directories

If you need two synchronise the files in two directories, i.e. make sure all files in the source directory
are copied to the destination directory you can use the Fs.sync(...)method.

Examples

1 // Make sure the two directories are completely synchronised, delete
superfluous files from destination

2 Fs.sync("C:\\MySourceDirectory", "C:\\MyDestinationDirectory");
3 // uhe same but don't delete those files in the destination directory

which are not present in the source
4 Fs.sync("C:\\MySourceDirectory", "C:\\MyDestinationDirectory", {
5 deleteSuperfluous: false,
6 });

Temp file

The tmpfile function will generate a random, non‑conflicting filename in the temp folder.

Example

1 var tmpFilePath = Fs.tmpfile();

8

	Fs
	System folders
	List (ls)
	Make a new directory
	Move file/folder
	Copy file/folder
	Delete file/folder
	Check file/folder presence
	Build a path
	Example
	Encrypt file
	Decrypt file
	Read
	Write
	Synchronise two directories
	Temp file

